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Abstract
We apply the Darboux theory to study the integrability of real quadratic
differential systems having an invariant conic. The fact that two intersecting
straight lines or two parallel straight lines are particular cases of conics allows
us to study simultaneously the integrability of quadratic systems having at least
two invariant straight lines real or complex.

PACS numbers: 02.30.Rz, 02.10.−v, 02.30.Jr

1. Introduction

By definition a real planar polynomial differential system or simply a polynomial system will
be a differential system of the form

dx

dt
= ẋ = P(x, y)

dy

dt
= ẏ = Q(x, y) (1)

where the dependent variables x and y and the independent variable (the time) t are real and P
and Q are polynomials in the variables x and y with real coefficients. Throughout this paper
m = max{degP, degQ} will denote the degree of the polynomial system.

Of particular interest are the systems such that m = 2. The polynomial differential
systems of degree 2 are called quadratic systems (QS). This type of equation appears in the
modelization of natural phenomena described in different branches of science. One particularly
well-known quadratic system is the Lotka–Volterra system (LV) which has been used to model
the time evolution of conflicting species in biology, in chemical reactions and economics
[21, 27]. Among other applications, we find a QS in astrophysics [6], in the equations of
continuity describing the interactions of ions, electrons and neutral species in plasma physics
(with the assumption of quasi-neutrality to eliminate either the ion or the electron equation)
[25]. A reduced QS is obtained from a generalized Blasius equation for fluid flow around a
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wedge-shaped obstacle in boundary layer theory [11, 28]. In the context of plasma physics,
all the nonlinear terms represent binary interactions or model certain transport across the
boundary of the system. Moreover, the QS appears in shock waves, in neural networks, etc.

Besides their biological and physical applications, the QS have been a matter of interest
for a mathematical study. More than one thousand papers have been published about QS (see
[24] for a bibliographical survey). In particular, the problem of existence of first integrals
has been studied by many authors, with different techniques such as Carleman embedding
[3], linear compatibility analysis (developed for a QS in R

3) [16, 26], Painlevé analysis
[14, 16, 20], Lie symmetries search [1] and the old Darboux method [4, 19] based on the
Darboux theorem [12].

The old Darboux method consists fundamentally in finding sufficient invariant algebraic
curves in order to construct the first integrals or integrating factors. The method used in this
paper is an extension of this method with the introduction of the so-called exponential factors
[9, 10] and investigating the existence of the Darboux invariants, the last being a class of
time-dependent first integrals.

In fact knowledge of the first integrals is of particular interest in mathematics and physics
because of the possibility to have explicit expressions for the solutions of the system. However,
it can be interesting sometimes to know if the system can have an invariant. Roughly speaking,
with a first integral we can describe completely the phase portrait of the polynomial system,
while with an invariant we only can describe its asymptotic behaviour.

In contrast with other works concerning the search for first integrals such as that of
Garnier [14], we are restricted here to real QS already having an invariant algebraic conic.
This particular choice helps us because the application of Darboux theory is simplified, as in
general we only need to find one algebraic conic or an exponential factor more. A survey of
many works related to the Darboux theory of integrability together with a first study of the
integrability of real QS having an invariant conic is given in [2]. This study is completed here
with the use of exponential factors and the search for Darboux invariants.

The paper is organized as follows. The main lines of Darboux theory are presented in
section 2. In section 3 we obtain the nine normal forms for the real QS having one of the
nine different types of conics: ellipse, complex ellipse, hyperbola, two complex straight lines
intersecting at a real point, two intersecting straight lines, i.e. the Lotka–Volterra system,
parabola, two parallel straight lines, two complex straight lines and one double straight line.
All these are presented in sections 4–11. Finally in section 12 we give our conclusions.

2. Basic concepts and theory

We denote by R[x, y] or C[x, y], the ring of polynomials in the variables x and y with
coefficients in R or C, respectively.

The vector field X associated with system (1) is defined by

X = P
∂

∂x
+ Q

∂

∂y
. (2)

The polynomial system (1) is integrable on an open subset U of R2 if there exists a
nonconstant analytic functionH : U → R, called a first integral of the system on U , which is
constant on all solution curves (x(t), y(t)) of system (1) on U ; i.e. H(x(t), y(t)) = constant
for all values of t for which the solution (x(t), y(t)) is defined on U . Clearly, H is a first
integral of system (1) on U if and only if XH ≡ 0 on U .
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Let R : U → R be an analytic function which is not identically zero on U . The function
R is an integrating factor of the polynomial system (1) on U if one of the following three
equivalent conditions holds

∂(RP)

∂x
= −∂(RQ)

∂y
div(RP,RQ) = 0 XR = −R div(P,Q) (3)

on U . As usual the divergence of the vector field X is defined by

div(X) = div(P,Q) = ∂P

∂x
+
∂Q

∂y
.

The first integral H associated with the integrating factor R is given by the indefinite
integral

H(x, y) =
∫
R(x, y)P (x, y) dy + h(x)

where h(x) is chosen to satisfy ∂H

∂x
= −RQ. Then

ẋ = RP = ∂H

∂y
ẏ = RQ = −∂H

∂x
. (4)

In order that this function H be well defined the open set U must be simply connected.
Conversely, given a first integralH of system (1) we always can find an integrating factor

R for which (4) holds.
An invariant of system (1) on the open subset U of R2 is a nonconstant analytic function

I in the variables x, y and t such that I (x(t), y(t), t) is constant on all solution curves
(x(t), y(t)) of system (1) contained in U .

Let f ∈ C[x, y]. The algebraic curve f (x, y) = 0 is an invariant algebraic curve of the
polynomial system (1) if for some polynomialK ∈ C[x, y] we have

Xf = P
∂f

∂x
+ Q

∂f

∂y
= Kf. (5)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. We note
that since the polynomial system has degree m, then any cofactor has at most degree m − 1.
Clearly, a null cofactor implies that f is a polynomial first integral.

We remark that in the definition of invariant algebraic curve f = 0 we always allow
this curve to be complex, that is f ∈ C[x, y]. As we will see, this is due to the fact that
sometimes for real polynomial systems the existence of a real first integral can be forced by
the existence of complex invariant algebraic curves. Of course when we look for a complex
invariant algebraic curve of a real polynomial system we are thinking in the real polynomial
system as a complex polynomial system.

The following result is well known (see for instance [9]).

Proposition 1. We suppose that f ∈ C[x, y] and let f = f
n1

1 · · ·f nr
r be its factorization in

irreducible factors over C[x, y]. Then, for a polynomial system (1), f = 0 is an invariant
algebraic curve with cofactorKf if and only if fi = 0 is an invariant algebraic curve for each
i = 1, . . . , r with cofactor Kfi . Moreover, Kf = n1Kf1 + · · · + nrKfr .

Now we introduce the notion of an exponential factor described in [8] under the name
‘degenerate algebraic curve’. We will see that an exponential factor plays the role of an
invariant algebraic curve when we look for a first integral of polynomial system (1).
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Let h, g ∈ C[x, y] and assume that h and g are relatively prime in the ring C[x, y]. Then
the function exp(g/h) is called an exponential factor of a polynomial system (1) if for some
polynomialK ∈ C[x, y] of degree at most m− 1 it satisfies the equation

X
(

exp
(g
h

))
= K exp

(g
h

)
. (6)

As before we say that K is the cofactor of the exponential factor exp(g/h).
We remark that in the definition of exponential factor exp(g/h)we allow that this function

be complex, that is h, g ∈ C[x, y]. This is due to the same reason as in the case of invariant
algebraic curves. That is, sometimes for real polynomial systems the existence of a real first
integral can be forced by the existence of complex exponential factors. Again when we look
for a complex exponential factor of a real polynomial system we are thinking of the real
polynomial system as a complex polynomial system.

The next result is well known (see [8]).

Proposition 2. If F = exp(g/h) is an exponential factor for a polynomial system (1) and h
is not a constant, then h = 0 is an invariant algebraic curve, and g satisfies the equation
Xg = gKh + hKF , where Kh and KF are the cofactors of h and F , respectively.

As far as we know, the problem of integrating a polynomial system by using its invariant
algebraic curves was started by Darboux in [12]. The version that we present here improves
Darboux’s version essentially because here we also take into account the exponential factors
(see [9]), the independent singular points (see [5]) and the invariants (see [2]).

Before stating the main results of the Darboux theory we need some definitions. If
S(x, y) = ∑m−1

i+j=0 aijx
iyj is a polynomial of degreem− 1 with m(m+ 1)/2 coefficients in C,

then we write S ∈ Cm−1[x, y]. We identify the linear vector space Cm−1[x, y] with Cm(m+1)/2

through the isomorphism S → (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).
We say that r points (xk, yk) ∈ R2, k = 1, . . . , r, are independent with respect to

Cm−1[x, y] if the intersection of the r hyperplanes
(aij ) ∈ Cm(m+1)/2 :

m−1∑
i+j=0

xiky
j

k aij = 0 k = 1, . . . , r




is a linear subspace of Cm(m+1)/2 of dimension m(m + 1)/2 − r > 0.
We remark that the maximum number of isolated singular points of a polynomial system

(1) is m2 (by the Bezout theorem), and that the maximum number of independent isolated
singular points of the system is m(m + 1)/2, and that m(m + 1)/2 < m2 for m � 2.

A singular point (x0, y0) of system (1) is called weak if the divergence div(P,Q) of
system (1) at (x0, y0) is zero.

The Darboux theory is contained in the next theorem, proved in [10] except for statement
(4), which is proved here.

Theorem 3. Suppose that a polynomial system (1) of degree m admits p invariant algebraic
curves fi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors exp(gj /hj ) with
cofactors Lj for j = 1, . . . , q , and r independent singular points (xk, yk) ∈ R2 such that
fi(xk, yk) 	= 0 for i = 1, . . . , p and k = 1, . . . , r and hj (xk, yk) 	= 0 for j = 1, . . . , q and
k = 1, . . . , r .

(1) Ifp+q +r < m(m+1)/2 and the r independent singular points are weak, then substituting
f
λi
i by |fi |λi if λi ∈ R, the function

f
λ1
1 · · · f λp

p

(
exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq
(7)
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for suitable λi, µj ∈ C not all zero is either a first integral of system (1), if
∑p

i=1 λiKi +∑q

j=1 µjLj = 0, or an integrating factor if
∑p

i=1 λiKi +
∑q

j=1 µjLj = −div(P,Q).
(2) If p + q + r = m(m + 1)/2, and the r independent points are week, then there exist

λi, µj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 µjLj = −div(P,Q) and (7) is an
integrating factor.

(3) If p + q + r = (m(m + 1)/2) + 1, then there exist λi, µj ∈ C not all zero such that∑p

i=1 λiKi +
∑q

j=1 µjLj = 0 and (7) is a first integral of system (1).
(4) Ifp+q+r � (m(m+1)/2)+2, then system (1) has a rational first integral, and consequently

all trajectories of the system are contained in invariant algebraic curves.
(5) If there exist λi, µj ∈ C not all zero such that

∑p

i=1 λiKi +
∑q

j=1 µjLj = −s for some

s ∈ R\{0}, then substituting f λi
i by |fi|λi if λi ∈ R, the real (multi-valued) function

f
λ1
1 · · · f λp

p

(
exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq
exp(st) (8)

is an invariant of system (1).

Proof. We only prove statement (4). We denote Fj = exp(gj /hj ). By hypothesis we have
p invariant algebraic curves fi = 0 with cofactors Ki , and q exponential factors Fj with
cofactors Lj . That is, the fi’s satisfy Xfi = Kifi , and the Fj ’s satisfy XFj = LjFj .

We have λi, µj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 µjLj = −s. Then, from

X
(
f
λ1

1 · · · f λp
p F

µ1
1 · · ·Fµq

q est
)

=
(
f
λ1
1 · · · f λp

p F
µ1
1 · · ·Fµq

q est
) p∑

i=1

λi
Xfi

fi
+

q∑
j=1

µj
XFj

Fj
+ s




=
(
f
λ1
1 · · · f λp

p F
µ1
1 · · ·Fµq

q est
) p∑

i=1

λiKi +
q∑

j=1

µjLj + s


 = 0

statement (4) follows. �

A (multi-valued) function of the form (7) is called a Darbouxian function. In particular,
function (8) is called a Darbouxian invariant.

If among the invariant algebraic curves a complex conjugate pair f = 0 and f̄ = 0
occurs, then the first integral will have a factor of the form f λf̄ λ̄, which is just the real valued
function ((Ref )2 + (Imf )2)Reλ exp(−2 Im λ arctan(Im f/Re f )). Hence, if the polynomial
system (1) is real, then the first integral obtained using the Darboux theory of integrability
is also real, independently of the fact of having used complex invariant algebraic curves or
complex exponential factors.

3. Real quadratic systems having an invariant conic

Quadratic systems with an invariant algebraic curve of degree 2 have been studied by many
authors. For instance, Qin Yuan-xum [23] studied the quadratic systems having an ellipse as
limit cycle. Druzhkova [13] formulated in terms of the coefficients of the quadratic system
the necessary and sufficient conditions for existence and uniqueness of an invariant algebraic
curve of second degree. A nice result is the following: a quadratic system having an algebraic
invariant curve of degree 2 has at most one limit cycle. This result is essentially due to Qin
Yuan-xun and Kooij and Zegeling [18] (see also Christopher [7] and Gasull [15]).
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We want to study the Darbouxian integrability of real quadratic systems which have an
invariant conic, i.e. an invariant algebraic curve f (x, y) = 0, with f (x, y) a real polynomial
of degree 2. For that we will look for additional invariant straight lines and exponential factors
of the form exp(g/h) with degree(g) � 3 and with h = constant, or h equal to the invariant
conic or to a real factor of it (if it exists). In the special case (LV) we also look for additional
invariant conics.

The conics in R2 are classified into ellipses (E), complex ellipses (CE), hyperbolas (H),
two complex straight lines intersecting at a real point (p), two real straight lines intersecting
at a point (LV), parabolas (P), two real parallel straight lines (PL), two complex parallel
straight lines (CL) and one double invariant real straight line (DL). After an affine change
of coordinates, we can assume that the above nine conics are given by x2 + y2 − 1 = 0,
x2 + y2 + 1 = 0, x2 − y2 − 1 = 0, x2 + y2 = 0, xy = 0, y − x2 = 0, x2 − 1 = 0, x2 + 1 = 0
and x2 = 0, respectively.

In order to apply the Darboux theory to study the integrability of a real quadratic system
having as invariant algebraic curve a conic, and simplify the computations, we start by
obtaining the normal forms for such systems.

We say that a quadratic system is of type (E) if it has an invariant ellipse. In a similar way
we define the quadratic systems of type (CE), (H), (p), (LV), (P), (PL), (CL) and (DL). We
remark that real quadratic systems having an invariant conic of type (LV), (PL), (p) or (CL)
have at least two invariant algebraic curves. Real quadratic systems having an invariant conic
of type (E), (CE), (H), (P) or (DL) have, in general, only one invariant algebraic curve. The
next result follows from [2].

Proposition 4. A real quadratic system having an invariant conic after an affine change of
coordinates can be written in one of the following nine forms

ẋ = a
2 (x

2 + y2 − 1) + 2y(px + qy + r) ẏ = b
2 (x

2 + y2 − 1)− 2x(px + qy + r) (E)

ẋ = a
2 (x

2 + y2 + 1) + 2y(px + qy + r) ẏ = b
2 (x

2 + y2 + 1)− 2x(px + qy + r) (CE)

ẋ = a
2 (x

2 − y2 − 1)− 2y(px + qy + r) ẏ = − b
2 (x

2 − y2 − 1)− 2x(px + qy + r) (H)

ẋ = a
2 (x

2 + y2) + c
2x + 2y(px + qy + r) ẏ = b

2 (x
2 + y2) + c

2y − 2x(px + qy + r) (p)

ẋ = x(ax + by + c) ẏ = y(Ax + By + C) (LV )

ẋ = b
2xy − a

2 (y − x2) + px + qy + r ẏ = by2 + c(y − x2) + 2x(px + qy + r) (P )

ẋ = a
2 (x

2 − 1) ẏ = Q(x, y) (PL)

ẋ = a
2 (x

2 + 1) ẏ = Q(x, y) (CL)

ẋ = x(ax + by + c) ẏ = Q(x, y) (DL)

if the invariant conic is of type (E), (CE), (H), (p), (LV), (P), (PL), (CL) and (DL), respectively.
Here Q(x, y) denotes an arbitrary polynomial of degree 2. Moreover, except for system
(LV), the cofactor of the invariant conic is ax + by + c, where the constants b and c are
zero if they do not appear in the system. To avoid reductions to linear or constant vector
fields, in systems (E), (CE) and (H), we must have (a2 + b2)(p2 + q2 + r2) 	= 0; in system
(p) we must have (a2 + b2 + c2)(p2 + q2 + r2 + c2) 	= 0; in system (LV) we must have
(a2 +b2 +A2 +B2)(a2 + c2)(B2 +C2) 	= 0 and the equalitiesA/a = B/b = C/c do not occur;
in system (P) we must have (a2 + b2 + c2)(p2 + q2 + r2 + b2)(p2 + q2 + r2 + a2 + c2) 	= 0; in
systems (PL) and (CL) we must have a 	= 0; and in system (DL) where the multiplicity of the
invariant straight line x = 0 is not distinguished, we must have a2 + b2 + c2 	= 0.

In what follows we study the integrability of each type of quadratic system given above.
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4. Quadratic systems having an invariant ellipse

Theorem 5 (Ellipse theorem). Let f1 = x2 + y2 − 1. Then for a system of type (E) with
(a2 + b2)(p2 + q2 + r2) 	= 0, the following statements hold.

(1) If ap + bq = 0 and p2 + q2 	= 0, then f2 = px + qy + r = 0 is an invariant straight line.
Moreover, if p2 + b2 	= 0, then f−2p

1 f b
2 is a first integral; and if a2 + q2 	= 0, then f 2q

1 f a
2

is a first integral.
(2) If p = q = 0, then f λ1

1 is an integrating factor for λ1 = −1, which gives the first integral
H = (x2 + y2 − 1)2r exp(ay − bx).

Proof. The cofactor of f1 = 0 isK1 = ax + by. Since in statement (1) ap + bq = 0, it follows
that f2 = 0 is an invariant straight line of system (E) with cofactor K2 = −2qx + 2py. Then,
by theorem 3(1) the first part of (1) is proved. The second part of (1) follows in a similar way.

If p = q = 0, then K1 = div. Therefore, by theorem 3(1), f −1
1 is an integrating factor of

system (E). Hence, since r(a2 + b2) 	= 0 statement (2) follows. �
We remark that if in systems (E) we look for exponential factors of the form exp(g(x, y))

or exp(g(x, y)/(x2 + y2 − 1)) with degree(g) � 3, then we only find the system given in
statement (2) of theorem 5.

Christopher lemma. Suppose that a polynomial system (1) of degree m has the invariant
algebraic curve f = 0 of degree n. Let Pm,Qm and fn be the homogeneous components of
P,Q and f of degreem and n, respectively. Then the irreducible factors of fn must be factors
of yPm − xQm.

We note that the irreducible factors of fn in R[x, y] are either linear or quadratic because
fn is a homogeneous polynomial, while the irreducible factors of fn in C[x, y] are always
linear. We also remark that yPm − xQm is the maximum degree of θ̇ if we write system (1)
in polar coordinates x = r cos θ, y = r sin θ.

Theorem 6 (Complex ellipse theorem). For a system of type (CE) the two statements of
theorem 5 hold interchanging x2 + y2 − 1 with x2 + y2 + 1.

Proof. The same proof as in Theorem 5. �

5. Quadratic systems having an invariant hyperbola

Theorem 7 (Hyperbola theorem). Let f1 = x2 − y2 − 1. Then for a system of type (H) with
(a2 + b2)(p2 + q2 + r2) 	= 0, the statements given in Table 1 hold.

If system (H) has an invariant straight line f2 = 0, then it satisfies one of the
statements (1)–(3). If system (H) has an exponential factor f2 of the form exp(g(x, y))
or exp(g(x, y)/(x2 − y2 − 1) with degree(g) � 3, then it satisfies one of statements (4)–(9).

Proof. The cofactors of f1 = 0 and f2 = px + qy + r = 0 are K1 = ax + by and
K2 = −2(qx + py), respectively. So, the first two statements can be proved as in Theorem 5.
We prove the first option of statement (3). Assume that a +b = r = 0. Then it is easy to check
that f2 = 0 is an invariant straight line of system (H) with cofactor K2 = 2(px + qy). The
divergence of (H) is div = (a − 2q)x + (b− 2p)y. Hence the equation λ1K1 + λ2K2 = −div,
has the solution λ1 = (2q − 2p − a)/a, λ2 = 1. Therefore, by theorem 3(1), we obtain (3).
Similarly proved are statements (4)–(6), where the exponential factors have respectively
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Table 1. Conditions for existence of invariant lines, exponential factors, first integrals, invariants
or integrating factors for the hyperbola system.

Statement Conditions f2 H orR

(1) ap − bq = 0, (p2 + q2)(a2 + q2) 	= 0 px + qy + r = 0 H = f
2q
1 f a2

ap − bq = 0, (p2 + q2)(b2 + p2) 	= 0 px + qy + r = 0 H = f
2p
1 f b2

(2) p = q = 0 R = 1/f1

(3) a ± b = r = 0, p ∓ q 	= 0 x ∓ y = 0 R = f
(2q∓2p−a)/a
1 f2

(4) ±a + b + 4p = p ∓ q = r = 0 exp(y ∓ x) H = f
1/(2p)
2 et

(5) a = p = r = b ∓ 2q = 0 exp((x ∓ y)/f1) H = f2e−qt

(6) a ∓ 4p = b ∓ 4q = r = 0, a ± b 	= 0 exp((x ∓ y)2/f1) R = f
−1/2
1 f

2(q∓p)/(a±b)
2

(7) a + 4q = b ∓ 2q = p = r = 0 exp((x((x ∓ y)2 − 1)± 2y)/f1) H = f2

(8) a ∓ 2p = b + 4p = q = r = 0 exp((y((x ∓ y)2 + 1)∓ 2x)/f1) H = f2

(9) a = r = b + 3p = p ∓ 2q = 0 exp((x3 − 3xy2 ± 2y3 − 9x)/f1) H = f2

−2p, q and 4(q ± p)(x ∓ y) as cofactors. In statements (7)–(9), K2 = 0, i.e. the exponential
factor is a first integral.

The following first integals have been computed from the integrating factors of statements
(2) and (3):
(2)H = f 2r

1 exp(bx + ay).
(3)H = f

2(q∓p)
1 ((p ∓ q)((a ∓ 4p)x2 + 2(2p ∓ 2q ∓ a)xy + (a + 4q)y2) + a(p ± q))a. �

6. Quadratic systems having two invariant complex straight lines
intersecting at a real point

The next theorem characterizes all real quadratic systems of type (p) which are integrable
having at least three invariant curves of degree 1. Of course, systems (p) always have two
complex straight lines x + iy = 0 and x − iy = 0.

Theorem 8 (Two invariant complex straight lines intersecting at a real point theorem). We
assume that (a2 + b2 + c2)(p2 + q2 + r2 + c2) 	= 0.

Let f1 = x + iy and f2 = f̄1. If a system (p) has a third invariant algebraic curve f3 = 0
of degree 1, then it satisfies one of the statements (1)–(7) given in Table 2.

If a system (p) has an exponential factor of the form exp(g(x, y)) or exp(g(x, y)/(x2+y2))

with degree(g) � 3, then it satisfies statements (8)–(11) given in Table 2.

Proof. The singular points of system (p) are computed using the resultant of the polynomials
P and Q with respect to the variable y, which turns out to be a polynomial of the form
xT (x) = x(A +Bx +Cx2 +Dx3). By the properties of the resultant, we know that if (x0, y0)

is a singular point of system (p), then x0 is a root of the resultant. We define

ω = 27A2D2 + 2(2B2 − 9AC)BD + (4AC − B2)C2.

Then ω is equal to

64(cp + 4rq)2(b2 + (a + 4q)2)2(16(cq − br)2 + 16(cp − ar)2 + c2(a2 + b2 + 8aq − 8bp))2.

It is well known for a polynomial T (x) of degree 3 (D 	= 0) that T (x) has a unique simple
real root if ω > 0, one simple real root and one double root or a triple real root if ω = 0, and
three simple real roots if ω < 0.
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Table 2. Conditions for existence of invariant lines, exponential factors, first integrals, invariants
or integrating factors for the (p) system (v = b − 4p,w = a + 4q).

Statement Conditions f3, H orR

(1) wc2 + 16r(ar − cp) = 0
vc2 − 16r(cq − br) = 0 H = (x2 + y2)2r exp

(
c arctan

( y
x

))
(2) p(4ar + cv) + q(4br − cw) = 0 f3 = vx − wy − 4r + (4br − cw)/(4p) = 0

v2 + w2 	= 0 H = f
λ1
1 f̄1

λ̄1f
λ3
3

a

(3) r = 0, c(v2 + w2) 	= 0 f3 = vx − wy = 0

R = f
λ1
1 f̄1

λ̄1f
λ3
3 , H = f

µ1
1 f̄1

µ̄1f
µ3
3 et b

(4) c = v = w = 0 f3 = px + qy + r = 0
H = (px + qy + r)2/(x2 + y2)

(5) a + 2q = b − 2p = c = r = 0 f3 = bx − ay = 0, H = (bx − ay)/(x2 + y2)

(6) a = c = q = b − 2p = 0 f3 = bx + 2r = 0, H = (bx + 2r)/(x2 + y2)

(7) a − 2q = b = c = p = 0 f3 = ay + 2r = 0, H = (x2 + y2)(ay + 2r)
(8) a = p = q = 0 f3 = exp(x)

a = p = q = c = 0 H = (x2 + y2)−2rf b3
(9) b = c = p = q = 0 f3 = exp(y), H = (x2 + y2)2rf a3
(10) v = w = r = 0 f3 = exp(xy/(x2 + y2)), H = xy/(x2 + y2)

(11) a = c = q = b − 6p = 0 f3 = H = exp((b3x3 − 18b2ry2 + 108br2x + 216r3)/(x2 + y2))

a For λ1 = (cp + 4rq)(8r − 2ic), λ3 = a(c2 + 16r2) + 4c(cq − 4rp). If moreover (c2 + r2)(a2 + c2 +
q2)(a2 + p2 + q2)(b2 + c2 + p2) 	= 0, a real expression of the first integral is H = (x2 + y2)8r(cp+4rq) exp(4c(cp +
4rq) arctan(y/x))(vx −wy − 4r + (4br − cw)/(4p))a(c

2+16r2)+4c(cq−4rp).
b For λ1 = −(a2 + b2 + 6(aq − bp) + 8(p2 + q2) + 2i(bq + ap))/(v2 + w2), λ3 = 4(pv − qw)/(v2 + w2),
µ1 = 4(pv − qw + i(bq + ap))/(c(v2 + w2)), µ3 = −2(bv + aw)/(c(v2 + w2)).

If (a + 4q)c2+16r(ar − cp) = 0 and (b − 4p)c2−16r(cq − br) = 0, then ω = 0 and
working with the roots of T (x), the resultant has three real roots, and one of them is double.
Otherwise ω > 0 and the resultant has at most two real roots, or it is identically zero. Then
system (p) has three real singular points, one of them being the origin. The other two are not
contained in the algebraic curves x + iy = 0 and x − iy = 0. So, by Theorem 3(1) it follows
that H = f

λ1
1 f̄

λ̄1
1 is a first integral of (p) with λ1K1 + λ̄1K̄1 = 0, K1 being the cofactor of f1

which is K1 = (
a
2 + i

(
b
2 − 2p

))
x +

(
b
2 − i

(
a
2 + 2q

))
y + c

2 − 2ir . So, statement (1) is proved.
With the assumptions of statement (2), the cofactor of f3 is K3 = 2(−qx + py). Since

p(4ar − c(4p − b)) + q(4br − c(4q + a)) = 0, it follows that λ1K1 + λ̄1K̄1 + λ3K3 = 0 for
λ1 = (cp+ 4rq)(8r−2ic) and λ3 = a(c2 + 16r2)+ 4c(cq−4rp). Therefore, by Theorem 3(1)

we obtain that f λ1
1 f̄1

λ̄1f
λ3
3 is a first integral, and consequently statement (2) is proved. Now we

suppose the hypothesis of statement (3). Then the cofactor of f3 is K3 = −2qx + 2py + c/2.
Since c((4p−b)2 +(4q+a)2) 	= 0, the system λ1K1 +λ̄1K̄1 +λ3K3 = (2q−a)x−(2p+b)y−c

has a unique solution for λ1 and λ3, the one described in the theorem. Then, by Theorem 3(1)

f
λ1
1 f̄1

λ̄1f
λ3
3 is an integrating factor of (p). Since the system µ1K1 + µ̄1K̄1 + µ3K3 = −s

has a unique solution for µ1 and µ3, the one described in the theorem, by Theorem 3(5),
f
µ1
1 f̄1

µ̄1f
µ3
3 est is an invariant of (p). Hence, statement (3) is proved. Similarly, statements

(4)–(7), which haveK3 = −2qx+2py as cofactor, and statements (8) and (9) with,respectively,
cx/2 + 2ry and −2rx as cofactor for f3 are proved. In statements (10) and (11), K3 = 0, i.e.
the exponential factor is a first integral.

To check that statements (2)–(7) of the theorem give all invariant algebraic curves of
systems (p) of degree 1, we must find all polynomials f3 of degree 1 satisfying (5). This
tedious task can be made easier with the help of an algebraic manipulator and the Christopher
lemma, which fix the form of f3 to be f3 = (4p − b)x + (4q + a)y+ constant. �
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7. Quadratic systems having two invariant real straight lines intersecting at a point

The systems (LV) are called Lotka–Volterra systems. Their study was started by Lotka and
Volterra in [21, 22, 27]. Later on Kolmogorov studied them in [17] and some authors call
the systems (LV) Kolmogorov systems. The next theorem characterizes all Lotka–Volterra
systems which are integrable having at least three invariant algebraic curves of degree 1 or an
exponential factor of the form exp(g(x, y)/h(x, y)) with degree (g) � 3, degree (h) � 2. Of
course, Lotka–Volterra systems in the normal form (LV) always have two invariant straight
lines x = 0 and y = 0.

Theorem 9 (Two invariant real straight lines intersecting at a point theorem). f1 = x and
f2 = y are invariant straight lines of a Lotka–Volterra system (LV). If (a2 + b2 + A2 + B2)

×(a2+c2)(B2 +C2) 	= 0 andA/a = B/b = C/c is not satisfied, then the statements of Table 3
hold, modulo the symmetry (x, y, a, b, c,A,B,C) → (y, x, B,A, C, b, a, c).

Table 3. Conditions for existence of invariant lines, exponential factors, first integrals, invariants
or integrating factors for the Lotka–Volterra system.

Statement Conditions f3, H orR

(1) aB − bA = 0, bC − Bc 	= 0 H = xB/(bC−Bc)y−b/(bC−Bc) et

(2) b = 0, ac 	= 0 f3 = ax + c = 0, R = x(C−c)/cy−2f
(cA−ac−aC)/(ac)
3

H = x−1(ax + c) ect

(3) c − C = 0, (A− a)(B − b) 	= 0 f3 = (A− a)x + (B − b)y = 0

R = xb/(B−b)yA/(a−A)f (ab−2aB+AB)/((a−A)(B−b))
3

H = xB/(b−B)ya/(A−a)f (aB−bA)/((a−A)(B−b))
3 eCt

(4) r12 = cB(A− a) + aC(b − B) = 0, f3 = aCx + cBy + cC = 0

acBC(a −A)(b − B) 	= 0 H = x(A−a)Bya(b−B)f aB−bA
3

(5) a − A = b − B = 0 f3 = ACx + cBy + cC = 0

a − A = b − B = 0 and c − C 	= 0 H = xCy−cf c−C3
(6) a = c = 0, bB 	= 0 f3 = ABx + (B − b)(By + C) = 0, H = x−Bf b3
(7) a = b = 0, c 	= 0 f3 = exp(x), R = x(C−c)/cy−2f

A/c

3 , H = x−1 ect

(8) a = B = 0 f3 = exp(Ax − by), H = xCy−cf3

(9) b = c = 0, a 	= 0 f3 = exp(1/x), R = x(A−2a)/ay−2f
−C/a
3 , H = 1/x + at

(10) c − C = b − B = 0, a −A 	= 0 f3 = exp(y/x), R = x(2a−A)/(A−a)yA/(a−A)f B/(a−A)3

c − C = b − B = 0, C 	= 0 f3 = exp(y/x), H = xAy−af−B
3 e(a−A)Ct

(11) b − B = c = 0 f3 = exp((By + C)/x), H = x−Ayaf3

If system (LV) has a third invariant straight line, it satisfies one of the statements
(2)–(6). If system (LV) has an exponential factor of the form exp(g(x, y)), exp(g(x, y)/x),
exp(g(x, y)/(xy)) or exp(g(x, y)/x2) with degree(g) � 3, then it satisfies statements
(7)–(11).

Proof. As the cofactors of x = 0 and y = 0 are, respectively, K1 = ax + by + c and
K2 = Ax +By +C, under the assumptions of statement (1) the equationµ1K1 +µ2K2 + s = 0
has the solution in statement (1).

Under the assumptions of statement (2) the cofactor of f3 is K3 = ax. Since ac 	= 0,
the system generated from the equation λ1K1 + λ2K2 + λ3K3 + (2a +A)x + 2By + c +C = 0
has a unique solution λ1 = (C − c)/c, λ2 = −2, λ3 = (cA − ac − aC)/(ac). Therefore,
by theorem 3(1) we obtain that xλ1yλ2f

λ3
3 is an integrating factor of system (LV). The

system generated from the equation µ1K1 + µ2K2 + µ3K3 = −s has a unique solution
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µ1 = −s/c, µ2 = 0, µ3 = s/c. Hence, by theorem 3(5), xµ1yµ2f
µ3

3 est is an invariant of (LV).
So, statement (2) is proved.

Now we assume the hypotheses of statement (3). Then the cofactor of f3 is K3 =
ax +By + c. Since (A− a)(B − b) 	= 0, then from λ1K1 +λ2K2 + λ3K3 + (2a +A)x + (b +
2B)y + 2c = 0 we obtain the unique solution λ1 = b/(B − b), λ2 = A/(a − A), λ3 =
(ab − 2aB + AB)/((a − A)(B − b)). Then, by Theorem 3(1) we have that xλ1yλ2f

λ3
3 is an

integrating factor of (LV). The system µ1K1 + µ2K2 + µ3K3 = −s has the unique solution
µ1 = sB/(C(b−B)), µ2 = as/(C(A−a)),µ3 = (aB−bA)s/(C(a−A)(B−b)).Therefore,
from Theorem 3(5) it follows that xµ1yµ2f

µ3
3 est is an invariant of (LV).

Suppose that r12 = 0 and acBC(a − A)(b − B) 	= 0, then f3 = aCx + cBy + cC = 0
is an invariant straight line of (LV) with K3 = ax + By and a solution of

∑3
i=1 λiKi = 0 is

λ1 = (A− a)B, λ2 = a(b − B), λ3 = aB − bA. Hence, by Theorem 3(1), we obtain (4).
Similarly, statements (5) and (6), where the respective invariant straight lines f3 have

Ax + By and By as cofactors and statements (7)–(11), where the respective exponential
factors have cx,Acx − bCy,−a, (A− a)y, B(A− a)y − aC as cofactors are proved.

Finally, in order to check that modulo the symmetry (x, y, a, b, c,A,B,C) →
(y, x, B,A,C, b, a, c), statements (2)–(6) of the theorem take into account all invariant
algebraic curves of the Lotka–Volterra system (LV) of degree 1, we must find all polynomials
f3 of degree 1 satisfying equation (5). This tedious task is done with the help of the algebraic
manipulator Maple, and the Christopher lemma. We note that the Christopher lemma says
that f3 must be of the form f3 = (a − A)x + (b − B)y + constant, f3 = x + constant or
f3 = y + constant. Moreover, due to the mentioned symmetry it is sufficient to consider the
first two possibilities. �

We can compute the first integral associated with the integrating factor of statement (2)
of Theorem 9, it is

H = xC/c

Cy

(
C(c + ax)(cA− aC)/(ac) + Bc(cA−aC)/(ac)yF

(
C

c
,
ac − cA + aC

ac
, 1 +

C

c
; −ax

c

))
where F(a, b; c; x) is the hypergeometric function

F(a, b; c; x)=
∞∑
k=0

(a)k(b)k

(c)k

xk

k!
.

Here we have used the notation

(a)k =
{

1 if k = 0
a(a + 1)(a + 2) · · · (a + k − 1) if k > 0.

The hypergeometric function F(a, b; c; x) is a solution of the hypergeometric differential
equation

x(1 − x)y ′′ + (c − (a + b + 1)x)y ′ − aby = 0 .

Note that statement 9(8) with A = −b was found and generalized to the n-dimensionsal
LV by Volterra [27]. Moreover, Cairó and Feix [3] found the invariants of statements 9(1) and
9(3) and the first integral 9(4) and also generalized them to the n-dimensional Lotka–Volterra
system.

The next theorem characterizes all Lotka–Volterra systems which are integrable having
an invariant conic different from xy = 0 or an exponential factor exp(g(x, y)/h(x, y)) with
degree(g) � 3 and h equal to 1, x, xy or x2.

Theorem 10. Let f1 = x and f2 = y. Assume that (a2 + b2 +A2 +B2)(a2 + c2)(B2 +C2) 	= 0
and that A/a = B/b = C/c do not hold simultaneously, then modulo the symmetry
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Table 4. Conditions for existence of invariant conics, exponential factors, first integrals, invariants
or integrating factors for the Lotka–Volterra system.

Statement Conditions f3,H or R

(1) B − 2b = a(2c + C)− cA = 0, f3 = C(ax + c)2 + c2By = 0

cC 	= 0 R = x−2y(c−C)/Cf−(2c+C)/(2C)
3 , H = x−2f3 e2ct

(2) b + B = a(2c + C)− cA = 0, f3 = (c + C)(ax + c)2 + 2acBxy = 0

ac(c + C) 	= 0 R = x−c/(c+C)y−(2c+C)/(c+C)f (c−C)/(2(c+C))3

H = x−1y−1f
(3c+C)/(2c)
3 e(c+C)t

(3) B(c + 2C)− bC = a(2c + C)− cA = 0, f3 = (aCx + cBy + cC)2 − 4acBCxy = 0

cC 	= 0 R = x−1y−1f
−1/2
3 , H = x−Cy−cf c+C3 e2cCt

(4) a(B − b) + (b − 2B)(A− a) = 0, f3 = acx + (ax + (2B − b)y)2 = 0

c − 2C = 0, 2B − b 	= 0 R = x(B−b)/(b−2B)y−2f
b/(2(b−2B))
3

H = xByb−2Bf B−b
3 eC(b−2B)t

(5) a − 2A = b − 2B = c = 0, C 	= 0 f3 = exp((By + C)2/x)

R = x−3/2y−2f
−1/(2AC)
3 , H = x1/2y−1 eCt

(6) a = b − 2B = c − 2C = 0, A 	= 0 f3 = exp((Ax − By)2/x)

R = x−1/2y−2f
1/(2AC)
3 , H = xy−1f

1/(2AC)
3 e−Ct

(7) a − A = b + B = c + C = 0, f3 = exp((C − Ax)2/(xy))

abAB 	= 0 R = x−1/2y−3/2f
−1/(2ab)
3 , H = xyf

−1/(ab)
3 e−2Ct

(x, y, a, b, c,A,B,C) → (y, x, B,A,C, b, a, c), the statements of Table 4 hold. If the
(LV) has a third invariant algebraic curve f3 = 0 of degree 2, it satisfies one of the statements
(1)–(4). If the (LV) has an exponential factor of the form exp(g(x, y)), exp(g(x, y)/x),
exp(g(x, y)/(xy)) or exp(g(x, y)/x2) with degree(g) � 3, then it satisfies statements (5)–(7).

Proof. In statements (1)–(4), the K3 are, respectively, 2(ax + by), 2ax, 2(ax + b(A − 2a)/
(2A− 3a)) and 2(ax+b(A−2a)/(2A−3a)+C). Then, according to Theorem 3(1) xλ1yλ2f

λ3
3

is an integrating factor, if and only if
∑3

i=1 λiKi+div = 0. Again, to see that xµ1yµ2f
µ3

3 est is an
invariant of system (LV) in statements (1)–(4), it is sufficient to verify that

∑3
i=1 µiKi + s = 0

from Theorem 3(5). When conditions a = 2A, b = 2B and c = 0 are satisfied, then
f3 = exp((By + C)2/x) is an exponential factor with cofactor K3 = −2AC(By + C) and
by statements (1) and (5) of Theorem 3 we obtain (5). Similarly proved are statements (6)
and (7), where the respective exponential factors have 2AC(Ax − By) and 2ab(Ax − C) as
cofactors.

To check that modulo the symmetry (x, y, a, b, c,A,B,C) → (y, x, B,A,C, b, a, c),

statements (1)–(5) of the theorem give all invariant algebraic curves of the Lotka–Volterra
system (LV) of degree 2, we must find all polynomials f3 of degree 2 satisfying equation (5).
We note that the Christopher lemma and the mentioned symmetry imply that f3 must be
of the form f3 = f00 + f10x + f01y + x2, f3 = f00 + f10x + f01y + xy, f3 = f00 + f10x+
f01y + x((a − A)x + (b − B)y) or f3 = f00 + f10x + f01y + ((a − A)x + (b − B)y)2. �

Note that the statements of theorems 9(5), 9(7) and 10(5) satisfy the condition aB −
bA = 0 of theorem 9(1), but they are not particular cases of it because they concern first
integrals or integrating factors. Actually the condition aB − bA = 0 alone gives only an
invariant. Moreover, exclusion conditions for statements of theorems 9(2), 9(3), 9(4), 10(2)
and 10(4) are found in the statements of theorems 9(7) and 9(9) for 9(2), 9(10) for 9(3), 9(5),
9(6), 9(8) and 9(11) for 9(4), 10(7) for 10(2) and 10(6) for 10(4). The exclusion conditions
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b = B = 0 and c = C = 0 of the statement of theorem 9(4) are particular cases of the
statements of theorems 9(2) and 9(3), respectively. Finally the excluded cases of 10(1) and
10(2), namely cC 	= 0, are particular cases of 9(3).

8. Quadratic systems having an invariant parabola

In the next theorem, first we study the Darboux integrability in system (P) using only the
parabola y − x2 = 0, thus we obtain statements (1), (2) and (6). After, we study the Darboux
integrability of system (P) with only the parabola and the existence of a unique invariant straight
line. We note that the integrability forced by the parabola and the existence of two real invariant
straight lines which intersect at a point has been analysed in Theorem 10. There are cases of
integrability forced by the existence of a parabola and two parallel invariant straight lines, as
the system b = 0, a − 2q = 0, q 	= 0 and A2 = p2 − 4qr > 0. Then f2 = 2qx + p + |A| = 0
and f3 = 2qx + p − |A| = 0 are two parallel invariant straight lines, and H = f

λ1
1 f

λ2
2 f

λ3
3 is

a first integral for λ1 = |A|, λ2 = c − p − |A|, λ3 = p − c − |A|. However, here we do not
study these cases. We also study the integrability forced by the parabola and the existence of
an exponential factor of the form exp(g(x, y)) or exp(g(x, y)/(y − x2)) with degree(g) � 3.

Theorem 11 (Parabola theorem). Let f1 = y − x2. Then for a system of type (P) with
(a2 + b2 + c2)(p2 + q2 + r2 + b2)(p2 + q2 + r2 + a2 + c2) 	= 0, the following statements hold.

(1) If b = 0, ap−2cq = 0 and aq 	= 0, then f λ1
1 is an integrating factor forλ1 = −(a+2q)/a

which gives the first integral H = (2cqx + aqy + ra)a/(y − x2)2q .
(2) If 3a− 4q = 0 and ap− 2cq = 0, then f λ1

1 is an integrating factor for λ1 = −5/2 which
gives the first integral H = (−4bx3 + 6bxy + 6cx + 3ay + 4r)/(y − x2)3/2.

(3) If a = b = 0, then f1e−ct is an invariant.
(4) IfA2 = a2−8aq+16q2+8bc−16bp > 0, c1 = 0, c2 = 0 (see the definitions of c1 and c2

in the appendix) and b(3a− 4q−|A|) 	= 0, then f2 = (4q−a−|A|)x + 2by + 2f00 = 0
where f00 satisfies b(3(a + A) − 4q)f00 + (−a2 + 6aq + 2b(p − c) − 8q2)|A| − a3 +
32q2(q − a) + 10a(aq + bp) + 8b(2c − 3p − br) = 0 is an invariant straight line,
and f

λ1
1 f

λ2
2 is an integrating factor for λ1 = (4q − 3a − 5|A|)/(2(3a − 4q − |A|)),

λ2 = 2(3a − 4q)/(3a − 4q − |A|).
(5) If 2b2r + (a − 2q)(a2 + 2bp − 2aq) = 0, cb − (a2 + 2bp − 2aq) = 0 and b 	= 0, then

f2 = bx + 2q − a = 0 is an invariant straight line, and H = f
λ1
1 f

λ2
2 is a first integral

for λ1 = 1, λ2 = −2.
(6) If b = 0, a−2q = 0, p2 −4qr = 0 and q 	= 0, then the straight line f2 = 2qx+p = 0 is

an invariant straight line of (P) and f λ1
1 f

λ2
2 is a Darboux integrating factor for λ1 = −1,

λ2 = −2, which gives the first integral H = 2(c−p)
2qx+p + ln

∣∣∣ 4q(y−x2)

(2qx+p)2

∣∣∣.
(7) If a = b = q = 0 and p 	= 0, then f2 = px + r = 0 is an invariant straight line,

and f λ1
1 f

λ2
2 is an integrating factor for λ1 = λ2 = −1, which gives the first integral

H = (y − x2)p/(px + r)c.
(8) If 64b2r−a(4q−a)2 = 0, 32bp+ (a−4q)(3a+4q) = 0, 16bc+ (a−4q)(5a−4q) = 0

and b 	= 0, then f2 = (4q − a)x + 2by + (4q − a)2/(8b) = 0 is an invariant straight
line, and f λ1

1 f
λ2

2 is an integrating factor for λ1 = −1/2, λ2 = −2, which gives the first
integral

H = arctan

(
4b
√
y − x2

4bx + 4q − a

)
+

(3a − 4q)
√
y − x2

2((4q − a)x + 2by + (4q − a)2/(8b))
.
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(9) If 3bp − 2q2 = 0, 27b2r − 4q3 = 0, 9bc + 4q2 − 6aq = 0 and bq 	= 0, then
f2 = 12qx + 9by + 4q2/b = 0 is an invariant straight line, and f λ1

1 f
λ2
2 is an integrating

factor for λ1 = −1, λ2 = −3/2, which gives the first integral

H = 6a − 8q√
bf2

− ln

∣∣∣∣9b2x2 + (24bq + 6b
√
bf2)x + 9b2y + 8q2 + 4q

√
bf2

9b2(x2 − y)

∣∣∣∣ .
If system (P) has an exponential factor of the form exp(g(x, y)) or exp(g(x, y)/(y−x2),
with 0 � degree(g) � 3, then it satisfies one of the following statements.

(10) If r(a − 2q)+ c(p − c) = 0, bc + 2(a− q)(a − 2q) = 0 and ((a − q)2 + r2 + c2)((a −
2q)2 + c2) 	= 0, then f2 = exp((cx + (a − q)y + r)/(y − x2)) is an exponential factor
and H = 2(cx + (a − q)y + r)/(y − x2) + (c(2q − 3a) + 4p(a − q))t is an invariant.

(11) If bc+ 2(a− q)(a− 2q) = 0, pc− (2rq + c2 − ra) = 0, and c 	= 0, then f2 = exp((cx +
(a−q)y+r)/(y−x2)) is an exponential factor. If a 	= 0 and a−q = 0 then f λ1

1 f
λ2
2 is an

integrating factor for λ1 = −3 and λ2 = 2(c2 − ar)/(ac2) which gives the first integral
H = (2(ar−c2)(ax+c)+a2c(y−x2))/(y−x2) exp(−2(ar−c2)(cx+r)/(ac2(y−x2))).

(12) If 3a − 4q = 0, 4b(2br − ap) + a3 = 0, 4bc − a2 = 0 and acq 	= 0, then
f2 = exp((cx + ay/4 + r)/(y − x2)) is an exponential factor, and f

λ1
1 f

λ2
2 is an

integrating factor for λ1 = −5/2 and λ2 = 2/a which gives the first integral
H = (ax + 2c)2a(y − x2)−a exp((4cx + ay + 4r)/(y − x2)).

(13) If b = q = 0, then f2 = exp(2(c − 2p)x + ay) is an exponential factor. Moreover, if
p = 0, then H = (y − x2)−2r exp(2cx + ay) is a first integral.

(14) If c = r = 0 and a− q = 0, then f2 = exp((2ax + by + 2p)/(y − x2)) is an exponential
factor and H = (2ax + by + 2p)/(y − x2) + (2bp − a2)t is an invariant.

(15) If b = c = r = 0 and a − q = 0, then f2 = exp(2(ax + p)/(y − x2)) is an exponential
factor, and f λ1

1 f
λ2

2 is an integrating factor for λ1 = −3 and λ2 = −p/a2 which gives
the first integral H = (ax2 − 2px − qy)/(y − x2) exp(−2p(ax + p)/(a2(y − x2))).

Proof. From proposition 4 we know that the cofactor of f1 is K1 = ax + by + c. To
prove statements (1)–(3) we apply Theorem 3 with only f1. Theorem 3(1) is applied
to statements (4)–(9), (11)–(13) and (15). Under the assumptions of statement (5), the
cofactor of f2 is K2 = (ax + by + 2p + (a − 2q)a/b)/2. Since K1 − 2K2 = 0,
we obtain (5). For statement (4), the cofactor of f2 is K2 = (a + 4q + |A|)x + by +
(80cq2 + 48bp2 + 6a2p + 9a2c + 36bc2 − 96bcp − 32pq2 − 48acq + (9ac + 6ap − 8pq −
12cq)|A|)/(2(3a − 4q)(3a − 4q + 3|A|)). Since λ1K1 + λ2K2 =−div for the values of λi’s
given in (4), we obtain (4). Similarly, statements (6)–(9), where the respective invariant
straight lines have qx + p/2, p, (q + a/4)x + by − a(a − 4q)/(8b), 4qx/3 + by + 4q2/(9b)
as cofactors, and statements (11), (12) and (15), where the respective exponential factors have
(a−2q)(4ra−4rq−c2)/(2c), a(c2 −ar)/(4c) and a2 as cofactors are proved. For statement
(13), λ1K1 +λ2K2 = 0 withK2 = (2ar +2pc−4p2)x + (−1/2a(2c−4p)+ca)y+ r(2c−4p)
as cofactor. Finally, Theorem 3(5) is applied to statements (10) and (14) with the cofactors
K2 = (2q − a)(2r(q − a)/c + c/2), for statement (10), K2 = a2 − 2bp, for statement (14).

�

Note that the conditions satisfied in Theorem 11(15) are the same as those of Theorem
11(14) plus the additional one b = 0. However, Theorem 11(15) is not a particular case
of Theorem 11(14) because it concerns an integrating factor. Actually the conditions for
Theorem 11(14) alone lead only to an invariant.
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9. Quadratic systems having two invariant real parallel straight lines

We can write system (PL) in the form

ẋ = x2 − 1 ẏ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2. (9)

Proposition 12. Let f1 = x + 1 and f2 = x − 1. If a02 = 0 in system (9), then f λ1
1 f

λ2
2 is an

integrating factor for λ1 = (a01 − a11 − 2)/2 and λ2 = −(a01 + a11 + 2)/2.

Proof. Let K1 and K2 be the cofactors of f1 and f2, respectively. Then K1 = x − 1 and
K2 = x + 1. From Theorem 3(1) and since λ1K1 + λ2K2 is equal to minus the divergence of
system (9), the lemma follows. �

Since we are interested in systems (9) which are integrable, by Proposition 12 we can
assume that a02 	= 0. Theorem 26 of [2] characterizes all systems (9) with a02 	= 0 which are
integrable having at least three algebraic curves of degree 1. Of course, systems (9) always
have the two invariant straight lines x + 1 = 0 and x − 1 = 0.

Note that we have found exponential factors for system (PL) of the form exp(g(x, y)/h)
with degree(g) � 3 and h is 1, x + 1, x − 1 or x2 − 1, but all the results obtained are included
in Proposition 12.

10. Quadratic systems having two invariant complex parallel straight lines

We assume that a 	= 0 for the systems (CL), otherwise x = constant is a first integral.
Therefore, doing a rescaling of the time variable (if necessary) we can assume that a = 2, and
consequently systems (CL) can be written in the form

ẋ = x2 + 1 ẏ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2. (10)

Proposition 13. Let f1 = x + i. If a02 = 0 for a system (10) of type (CL), then f λ1
1 f̄

λ̄1
1 is an

integrating factor for λ1 = − 1
2 (2 + a11 + ia01).

Proof. The cofactor of f1 is K1 = x − i. From Theorem 3(1), since λ1K1 + λ̄1K̄1 is equal to
minus the divergence of system (10), the lemma follows. �

Due to Proposition 13 in the rest of the section we assume that a02 	= 0. Theorem 27 of
[2] classifies all real quadratic systems of type (CL) which are integrable having at least three
invariant algebraic curves of degree 1. Of course, systems (CL) always have two complex
straight lines x + i = 0 and x − i = 0.

Note that we have found exponential factors for system (CL) of the form exp(g(x, y)/h)
with degree(g) � 3 and h = 1 or h = x2 + 1, but all the results obtained are included in
Proposition 13.

11. Quadratic systems having an invariant real straight line

Suppose that a quadratic system has an invariant straight line. After a rotation and a translation
we can assume that this invariant straight line is x = 0. Then, the system can be written as

ẋ = x(ax + by + c) ẏ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2. (11)

If this system, which has the invariant straight line x = 0, has another invariant straight
line or an invariant conic, then after an affine change of coordinates (if necessary) it can be
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written as one of the first eight normal forms of Proposition 12. Hence, we do not need to
study the integrability of systems (DL) if they have some invariant algebraic curve of degree
1 or 2 different from x = 0.

In the next theorem, we study the integrability of systems (11) using the existence of
the invariant straight line x = 0, and only looking for exponential factors of the form
exp(g(x, y)) = 0, exp(g(x, y)/x) and exp(g(x, y)/x2) = 0, with degree(g) � 3. If in
this study, there appear systems which are integrable due to the existence of some other
invariant straight line or some invariant conic we omit them, because the integrability of such
systems is known as mentioned above.

Table 5. Definition of the parameters appearing in theorem 14.

Name Expression Name Expression Name Expression

a1 a − a11 a2 a + a11 a3 a − 2a11

a4 a + 2a11 a5 2a − a11 a6 2a + a11

a7 2a − 3a11 a8 3a − a11 b1 b − a02

b2 b + a02 b3 b − 2a02 b4 2b − a02

c1 c − a01 c2 c + a01 c3 c − 2a01

c4 2c − a01 d 4a10a02 − ac e1 a00a − a10c

e2 a01a − a10b e3 a10a − a20c e4 a10b − a11c

Theorem 14. Let f1 = x = 0, then if a2 + b2 + c2 	= 0 = 0, the following cases hold. (see
Table 5):

(1) If b1 = 0, a00b + c1c = 0 and bc 	= 0, then f2 = exp((cy + a00)/x) is an
exponential factor and the additional condition a20b + a1a = 0 gives the invariant
H = xa1c exp

(
b(cy + a00)/x +

(
e1b − a1c

2
)
t
)
.

(2) If a02 = 0, a11a−a20b = 0 and ab 	= 0, then f2 = exp(−a20x+ay) is an exponential fac-
tor and the additional conditiona00b

(
a2 + a20b

)−a01a(ac−e2) = 0 leads, when a01 	= 0,

to the first integral H = x−a2
01a(a01(ax + by) + a00b)

a(a01c−a00b) exp(a01b(ay − a20x)). If
the additional condition is a10ab − a01a

2 − a20bc = 0, then H = xa01a exp(a20bx −
aby + a(a00b − a01c)t) is an invariant.

(3) If a01 = a02 = a2 = 0, then f2 = exp
(−a20x

2 + 2axy + by2 − 2a10x + 2cy
)

is an
exponential factor, which gives the first integral H = x2a00 exp

(
a20x

2 − 2axy − by2 +
2a10x − 2cy

)
.

(4) If b4 = 0, ba00 + c4c = 0, c2a5 − be1 = 0 and bc 	= 0, then f2 = exp
(
(−2c(a5x −

by) + a00b)/(2x2)
)

is an exponential factor and H = (2bcy + a00b)/x
2 − 2a5c/x −

2c
(
2a2 − a11a + a20b

)
t is an invariant. Moreover, the additional condition a8 = 0

gives the integrating factor R = x−5f
λ2

2 with λ2 = (
a00b − 2c2

)/(
c2
(
a2 − a20b

))
.

(5) If b2 = 0, a2a + a02a20 = 0, a2c2 + a02e3 = 0 and a02ab 	= 0, then f2 =
exp

(
x
(
a20ax − 2a2y + 2e3

))
is an exponential factor and the additional condition

a00a
2−e3c = 0 leads, when a2

00+c2 	= 0, to the first integralH = x(a20cx−2acy+2a00a).
Similarly, if the additional condition is a2c − a02e3 = 0, then R = xf

λ2
2 with

λ2 = b(3a + a11)
/(

2a2
(
c2 + a00b

))
is an integrating factor.

(6) If c = a00 = b1 = 0, then f2 = exp((by + a01)/x) is an exponential factor, and
the additional condition a01a20 + a10a1 = 0 with a01 	= 0, leads to the first integral
H = xa10a02−a01a11(a10x + a01y)

a01a−a10a02 exp((a02y + a01)a01/x).
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(7) If a = a02 = a20 = 0 and b2+a2
11 	= 0, then f2 = exp(−a11x+by) is an exponential factor,

and the additional condition a01a10 − a00a11 = 0 leads, when a10a11 	= 0, to the first
integral H = xa00a

2
11(a11y + a10)

a10e4 exp(a11a10(a11x − by)). If the additional condition
is e4 = 0, then one obtains the invariant H = xa01 exp(a11x − by + (a00b − a01c)t).

(8) If a00a11 − a10(2c − a01) = 0, a00a02 + 2c1c4 = 0, 2a2
10c4 + a00(a20c1 − a10a) = 0,

a00b + 3c1c4 = 0 and a00c1b 	= 0, then H = (
a10(a00a − 2a10c4)

2x3 − a00ac1(a00a −
2c4a10)yx

2 + c4c
2
1(−3c4a10 + 2a00a)xy

2 − c2
4c

3
1y

3 − a00c1(a01a00a − 2c4a10c)xy −
1
2a00c4(2c − 3a01)c

2
1y

2 − a2
00c1(−5a10c + a00a + 3a10a01)x + a2

00c
2
1cy + 1

2a
3
00c

2
1

)/
x2 is

a first integral.
(9) If 2b − 3a02 = 0, c(2c − 3a01) + 3a00b = 0, a7c

2 − 3e1b = 0, 3a20b + a7a = 0 and
bc 	= 0, thenH = (−8a3

7c
3x3−24a2

7bc
3x2y−24a7b

2c3xy2−8b3c3y3−72c2b2a7a00xy−
36a00b

3c2y2 − 54a2
00b

2c(a7x + by)− 27a3
00b

3
)/
x2 is a first integral.

(10) If a00 = a11 = b3 = c1 = 0, then f2 = exp
((
a20x

2 − axy − a02y
2 − cy

)/
x
)

is an
exponential factor, andH = xa10 exp

((
(a20x−ay)x− cy−a02y

2
)/
x
)

is a first integral.
(11) If a = a11 = b3 = c1 = 0, then f2 = exp

(( − 2a20x
2 + by2 + 2cy + 2a00

)/
x
)

is an
exponential factor, andH = x2a10 exp

((
2a20x

2 −by2 −2cy−2a00
)/
x
)

is a first integral.
(12) If c = a01 = a1 = b1 = 0, then f2 = exp

((
by2 + 2(ay + a10)x + a00

)/
x2
)

is an
exponential factor, andH = x2a20 exp

(−(by2 + 2(ay +a10)x +a00
)/
x2
)

is a first integral.
(13) If a = a11 = b1 = c4 = 0, then exp

((
by2 + 2a10x + 2cy + a00

)/
x2
)

is an exponential
factor, and H = x−2a20 exp

((
by2 + 2a10x + 2cy + a00

)/
x2
)

is a first integral.
(14) If c = a01 = a11 = b3 = 0, then f2 = exp

((
2(a20x − ay)x − by2 − 2a00

)/
x
)

is
an exponential factor, and H = x2a10 exp

((
2a20x

2 − 2axy − by2 − 2a00
)/
x
)

is a first
integral.

(15) If a00 = a1 = b1 = c4 = 0, then f2 = exp
((
a02y

2 + 2(ax + c)y + 2a10x
)/
x2
)

is
exponential factor, and H = x2a20 exp

(−(a02y
2 + 2(ax + c)y + 2a10x

)/
x2
)

is a first
integral.

(16) If a00 = a01 = a02 = 0 and ba20−a4a6 = 0, thenH = 2a2
(
a6a

2
4x

3+b3y3
)−6ba2(aa4x+

a11by)xy+3a4(b(3a+2a11)a10 −a6a4c)x
2 −6b(aa10b+a11a4c)xy−3b2(a10b−c(3a11 +

2a))y2 + 6b(a10b − ca4)(a10x − cy) is a first integral.
(17) If a00 = c1 = b3 = 0, a3a + 2a20b = 0 and a02ab 	= 0, then f2 = exp

((
4a2

20a02x
2 −

4a02a20axy + a02a
2y2 + a2cy

)/
x
)

is an exponential factor, and if moreover, 4a02a20c −
ad = 0, then H = (

d2x2 − 4a02cdxy + 4a2
02c

2y2 + 4c3a02y
)/
x − 4c3a10a02t is an

invariant. If the additional condition is c = 0, thenR = x−5/2f
1/(2a10a

2)

2 is an integrating

factor. Finally, if the additional condition is 4a02a20 + a2 = 0, then R = f
−2/(a10a

2)

2 is an
integrating factor.

(18) If a = a20 = b3 = c1 = 0, then f2 = exp
((

4a2
11x

2 − 4a11bxy + b2y2 + 2bcy + 2a00b
)/
x
)

is an exponential factor. If b 	= 0 and if moreover, 2a00b − c2 = 0, then
R = x−5/2f

1/(4a10b−4a11c)

2 is an integrating factor.
(19) If a00 = b3 = c3 = 0 and a3a + 4a02a20 = 0, then f2 = exp

(
(2a20x − ay)2/x

)
is

an exponential factor. If a02ab 	= 0, then the additional condition 4a20a02 + a2 = 0
leads to the invariant H = x4e3a20 exp

(
a(−2a20x + ay)2/x − 4a20 e3ct

)
and to the

integrating factorR = x−3/2f
a/(8a20e3)

2 . Finally, if the additional condition is c = 0, then

R = x−5/2f
a02/(2a10a

2)

2 is an integrating factor.
(20) If c = a00 = a11 = b3 = 0, then f2 = exp

((−2a20bx
2 +2abxy+b2y2 +4a01by+4a2

01

)/
x
)

is an exponential factor. If b 	= 0 and if moreover, 2a20b + a2 = 0, then H =
x−2a10b+2a01a exp

((
(ax + by)2 + 4a01(a01 + by)

)/
x + 4a01(a01a − a10b)t

)
is an invariant

and R = x−3/2f
1/(4e2)

2 is an integrating factor.
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(21) If c = a00 = b4 = e2 = 0 and a 	= 0, then f2 = exp
(
(2a(−a5x + by) + a10b)/x

2
)

is an exponential factor, and H = (2a(a5x − by) − a10b)/x
2 + 2a(a20b + a5a)t is an

invariant. If b 	= 0 and if moreover, a8 = 0, then H = a
(
a2 − a20b

)
x2 − (

a10abx −
a10b

2y
)2a2(a2−a20b) exp

(
a10b

(
2a2x + 2aby + a10b

)/
x2
)/
x4a2(a2−a20b) is a first integral.

Finally, if the additional condition is a5a+a20b = 0, thenH = (2a(a5x−by)−a10b)/x
2

is a first integral.
(22) If a = c = a00 = a10 = b4 = 0, then f2 = exp

(
(2a11x+2by+a01)/x

2
)

is an exponential
factor, and H = (2a11x + 2by + a01)/x

2 − 2a20bt is an invariant. If moreover, a11 = 0,
then H = (

a20x
2 + a01y

)
exp

(−a01(2by + a01)/
(
2a20bx

2
))/

x2 is a first integral.

Proof. The cofactor of f1 is ax + by + c and the cofactors of f2 are a20cx − ca1y − e1,
e3x + a01ay + a00a, 2a00(ax + by + c), c(a5a + a20b), −2a

(
a2c

2 + e1b
)
x/b, b(a20x − a1y) +

a10b−a01a and e4x +b(a01y +a00), respectively, for statements (1)–(7); −(ax + 2a02y + c)a10,
2a10(by+c), 2a20(ax+by), 2a20(by+c), −2a10(ax+by) and 2a20(ax+a02y+c), respectively,
for statements (10)–(15),

(
a2c−4a02e3

)
(2a20x−ay)/2 +a10a

2c, 2e5(by−2a11x)+2b(a10c−
2a11a00), 2e3(−2a20x + ay), 2b(2a01a20 + a10a)x − 2(a01a − a10b)(by + 2a01), 2a(a5a +
a20b) and 2a20b, respectively, for statements (17)–(22) and null for statemnts (8), (9) and (16).
The different statements are proved by applying Theorem 3 with f1 and f2. �

12. Conclusion

All the differential systems considered are particular subclasses of real quadratic systems
having an invariant conic as solution. These subclasses are obtained imposing suitable
conditions on the parameters of general quadratic systems. It turns out that in these subclasses
of systems, the existence of one invariant conic without any additional condition among the
parameters of the differential system has been the key point for the search for first integrals,
integrating factors and invariants. The use of both invariant algebraic curves and exponential
factors have completed the package of results, as appears clearly in the Lotka–Volterra system.
This paper completes the study of Darboux integrability of the quadratic differential systems
having an invariant conic (see [2]). Here we restricted our interest to real systems. Without
any serious difficulty the extension to complex systems can be done. It is also possible to
investigate the Darboux integrability of these subclasses of quadratic systems looking for
invariant algebraic curves and exponential factors given by polynomials of higher degree.
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Appendix. Definition of c1 and c2 in Theorem 11(4)

Here we give the definitions of c1 and c2 as follows: c1 = 32q3a−(16pq+24cq)ab−3a4−4|A|
(−(6p − 3 c)ab − 4 q(c − 2p)b − 3 a3 + 10 qa2 − 8 q2a) + q(8pq − 20 cq)b + 48 b2ra +
22 a3q − 48 a2q2 + 4 (−16 rq − 24pc + 9 c2 + 12p2)b2 + 9 (2p − c)ba2 = 0, c2 =
2 916 a7q − 21 888 a6q2 + 88 704 a5q3 − 209 408 a4q4 + 287 744 a3q5 − 212 992 q6a2 +
65 536 q7a − 162 a8 + 65 536 abpq5 − 128 b3(2p − c)(212p2 − 372pc + 153 c2)q2 −
32 768 b(2p − c)q6 + 192(164p2 − 252pc + 81c2) q(2p − c)ab3 + 54b(50p − 33c)a6 −
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256 q3(706p − 603 c)a3b + 4096 b2(2p − c)(14p − 11c)q4 − 144q(194p − 135c)a5b +
48q(20p2 − 516pc + 297 c2)b2a3 − 256 q3(189 c2 + 708p2 − 772pc) ab2 + 5 632pq2(14p−
9c)a2b2 + 1536b(62p − 79c)q4a2 − 216(2p − c)(44p2 − 60pc + 15c2)a2b3 − 144(16p −
9c)(2p − 3c)b2a4 + 26 880q2(4p − 3c)ba4 + 288(2p − c)2(2p − 3c)2b4 + (3a − 4q)
(6 144q6 − 15 104q5a + 1476q2a4 − 128q4(62p − 19c)b+ 96p(2p − c)(2p − 3c)b3 −
6 640q3a3 + 14 400q4a2 − 126qa5 + 16q2(34p + 21c)(2p − c)b2 + 3(220p2 − 27c2 −
120pc)b2a2 − 9ba4 (46p − 9c) − 24q(6p + c)(14p − 9c)b2a + 128q3(127p−40c)ba −
88q2(134p − 39c)ba2 + 12q (304p − 75c)ba3)|A| + 3(3a − 4q)(336q3a − 128q4−
18a4 − 8q2(6p − 7c)b + 126a3q − 316a2q2+ 9(2p − c)(2p − 3c)b2 + 3(2p − 3c)ba2+
4q(4p− 3c)ab)|A|3 = 0.
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